Monthly Archives: December 2018

Asteroid to Meteorite to Crater

Every day, about 40 tons of space rocks reach the top of Earth’s atmosphere. These asteroids come in many different sizes and have been floating around in space for billions of years. Once they reach the Earth, however, they become meteors — more colloquially known as shooting stars.

Meteorite 1

Friction with the air causes the rock to ignite and luminesce. Most of these are pretty dim and can only be seen at night. And most of these are also too small for any chunk to reach the surface of the Earth; the heat and friction vaporize the meteors completely. However, sometimes the meteor is large enough to withstand the friction until it hits the surface. These are classified as meteorites. Very few of these are large enough to leave a significant impact, but every once in a while, a large meteorite touches down. When this happens, it compresses the surface, which will decompress moments later as a shockwave, traveling through the rock and carving out a crater.

Meteorite 2

Very rarely, an extinction-level event meteor collides with our planet. Such an event happened 66 million years ago, and is a possible cause of the major extinction event that killed all the dinosaurs. The impact is hypothesized to be a billion time stronger than the first atomic bombs, sending ash and dust into the air that blocked sunlight for more than a full year.

Meteorite

Thankfully, such events are incredibly rare, so the most you’ll have to be worried about is a small dent in your car — and even that is unlikely to happen!

Written By: Scott Yarbrough

What is a Tippe Top and How Does it Work?

At first glance, a Tippe Top looks like a normal spinning top. A few moments after you spin it however, the tippe top flips over and begins spinning on its thin stem, raising its center of mass upwards! This marvel of a toy stumped physicists and was popular among many well-known figures in the mid-1900s.

tippe top

The strange mechanics that add potential energy to the toy fascinated Nobel Prize winners Niels Bohr and Wolfgang Pauli. It was originally designed in the mid-1800s, but was reinvented in the 1950s and sold as a toy. Very popular at the time, it drew the attention of physicists who sought to figure out exactly what was happening.

tippe top physics

In order to flip over and raise its center of mass, the tippe top needs to translate some of its rotational momentum. It does so because its center of mass is actually lower than its geometrical center. As it spins, the rotational axis is offset from the point of contact with the table, which causes the top to trace out a circle on the table.

tippe top  gif

The friction with the table applies a torque that causes the top to tip over, changing its angular momentum. When it becomes horizontal, the top actually reverses its direction of spin! Once the stem hits the table, the torque causes the top to flip over! It’s spinning slower than it was before, and that energy has gone into gravitational potential energy!

It just goes to show that even simple-looking toys can have some cool and challenging physics behind them! You just have to stop and think about how they actually work.

Written By: Scott Yarbrough

How to Tie Some Knots

One of AstroCamp’s best activities is our ropes course! From zipline to skycoaster, we encourage kids to push themselves to overcome the challenge. But there’s a lot of unseen work that goes into setting up these activities! One of the most important jobs is getting all the knots tied!

We use an assortment of different knots on our ropes courses. If you want a step-by-step instruction of how to tie a few of them, check out the video above!

knots 8

The “Figure-8” and “Figure-8 on a Bight” knots feature heavily on the ropes course. They’re easy and strong knots, and feature heavily in rock climbing. The allow us to connect carabiners to the participants. The Figure-8 on a Bight is usually accompanied by some sort of stopper knot to prevent the line from slipping. If you’ve ever been attached to a rope at AstroCamp, it’s most likely been via this knot!

8 knots

The third knot we show in the video is the “Alpine Butterfly.” It’s a unique knot in that it can be tied at any point on the rope without needing to access either end. It creates a fixed loop, where a carabiner or another rope can be attached. We use this knot on the skycoaster to retrieve the line after you’ve pulled the release cord. It’s also how we attach you to the haul rope that you use to get the skycoaster participant up into the air in the first place!

butterfly knots

There are quite a few other knots that we use on the ropes course, but these are three of the most common. With just a small length of rope, you can practice them and become a ropes master!

Written By: Scott Yarbrough

WELCOME TO OUR ASTROCAMP BLOG

We would like to thank you for visiting our blog. AstroCamp is a hands-on physical science program with an emphasis on astronomy and space exploration. Our classes and activities are designed to inspire students toward future success in their academic and personal pursuits. This blog is intended to provide you with up-to-date news and information about our camp programs, as well as current science and astronomical happenings. This blog has been created by our staff who have at least a Bachelors Degree in Physics or Astronomy, however it is not uncommon for them to have a Masters Degree or PhD. We encourage you to also follow us on Facebook, Instagram, Google+, Twitter, and Vine to see even more of our interesting science, space and astronomy information. Feel free to leave comments, questions, or share our blog with others. Please visit www.astrocampschool.org for additional information. Happy Reading!

Categories

Archives

Tags